Using Bioconductor To Analyse Microarray Data: Difference between revisions

Line 40: Line 40:
<pre>
<pre>
library(limma)  #load limma package
library(limma)  #load limma package
library(affyPLM)  #load affyPLM package
eset.norm <- normalize.ExpressionSet.quantiles(eset)  #normalize expression set by quantile method
pData(eset)  #to see phenotype annotation data
pData(eset)  #to see phenotype annotation data
design <- model.matrix(~(c(1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)),eset)  #set design matirx
design <- model.matrix(~(c(1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)),eset)  #set design matirx
colnames(design) <- c("resistant","sensitive")  # give names to the treatment groups
colnames(design) <- c("resistant","sensitive")  # give names to the treatment groups
design  #check the design matrix
design  #check the design matrix
fit <- lmFit(eset,design)
fit <- lmFit(eset.norm,design) #Fit data to linear model
fit.eb <- eBayes(fit)
fit.norm.eb <- eBayes(fit.norm) #Empirical Bayes
write.csv(fit.eb, file="filename.csv")  #write to CSV file
write.csv(fit.norm.eb, file="filename.csv")  #write to CSV file
</pre>
</pre>