Using Bioconductor To Analyse Microarray Data: Difference between revisions

mNo edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Category:R]]
[[Category:R]]
[[Category:Bioinformatics]]
[[Category:Bioinformatics]]
[[Category: Bioconductor]]


==Software Requirements==
==Software Requirements==
Line 27: Line 28:
**series - '''GSE'''
**series - '''GSE'''
<pre>
<pre>
gds <- getGEO("GDS162")  #load GDS162 dataset
gds <- getGEO("GDS2946")  #load GDS162 dataset
Meta(gds)  #show extracted meta data
Meta(gds)  #show extracted meta data
table(gds)[1:10,]  #show first ten rows of dataset
table(gds)[1:10,]  #show first ten rows of dataset
Line 40: Line 41:
<pre>
<pre>
library(limma)  #load limma package
library(limma)  #load limma package
library(affyPLM)  #load affyPLM package
eset.norm <- normalize.ExpressionSet.quantiles(eset)  #normalize expression set by quantile method
pData(eset)  #to see phenotype annotation data
pData(eset)  #to see phenotype annotation data
design <- model.matrix(~(c(1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)),eset)  #set design matirx
design=model.matrix(~ -1+factor(c(1,1,1,1,1,1,1,2,2,2,2,2,2,2,2)  #set design matirx
colnames(design) <- c("resistant","sensitive")  # give names to the treatment groups
colnames(design) <- c("obese","lean")  # give names to the treatment groups
design  #check the design matrix
design  #check the design matrix
fit <- lmFit(eset,design)
fit <- lmFit(eset.norm, design)  #Fit data to linear model
fit.eb <- eBayes(fit)
cont.matrix <- makeContrasts(Obese.vs.Lean=obese-lean, levels=design)
write.csv(fit.eb, file="filename.csv")  #write to CSV file
fit.cont <- contrasts.fit(fit, cont.matrix)
fit.cont.eb <- eBayes(fit.norm) #Empirical Bayes
write.csv(fit.cont.eb, file="filename.csv")  #write to CSV file
</pre>
 
==Clustering Analysis==
Bioconductor packages can calculate distance matrices:
<pre>
hc <- hclust(dist(t(exprs(eset.norm))))
plot(hc)
</pre>
</pre>