Rate of drop analysis: Difference between revisions

Mollyec (talk | contribs)
No edit summary
Mollyec (talk | contribs)
No edit summary
 
Line 12: Line 12:


==Sample R Code==
==Sample R Code==
new.data.set <-original.data.set%>%
models<-ITT.raw.data%>%
filter(time=="0"| time == "15" | time == "30"| time =="45")
  filter(time<60)%>%
  group_by(ID, sex, treatment)%>%
  mutate(l.glucose = log(glucose))%>%
  do(fitted.model= lm(l.glucose~ time, data =.))%>%
  mutate(rate =coef(fitted.model)["time"],
          max = coef(fitted.model)["(Intercept)"],
        rsq = summary(fitted.model)$r.squared)%>%
  mutate(max.exp = exp(max))%>%
  mutate( slope= max.exp*rate)


drop.data.lm <- lm (formula = ( glucose ~ time + treatment + time:treatment, data = new.data.set)


anova(drop.data.lm)
summary.models<-models%>%
  group_by(sex,treatment)%>%
summarise_at(.var ="slope", .funs = funs(mean, se))


coefficients(drop.data.lm)
ggplot(summary.models, aes(treatment, mean, fill = treatment))+
  geom_col(aes(fill = treatment))+
  facet_grid(.~sex)+
  geom_errorbar(aes(ymin = mean-se, ymax = mean + se), width = 0.3)+
  scale_fill_manual(values = color.scheme)+
  labs(title = "Rate of Drop, ITT",y="mg/dL per minute")
 
rate.aov<-aov(slope ~ sex + treatment, data = models)
anova(rate.aov)%>%kable